

REPUBLIC OF SLOVENIA MINISTRY OF HIGHER EDUCATION, SCIENCE AND TECHNOLOGY METROLOGY INSTITUTE OF THE REPUBLIC OF SLOVENIA

EMRP 2007 Next generation of power and energy measuring techniques

'Power & Energy' WP4

by Rado Lapuh, MIRS/SIQ P. Clarkson, P. Wright, J. Hällström, U. Pogliano 22-23 March 2011, Delft

Accurate Analysis Algorithms in Support of Power Quality

Content

Social and scientific challenge
Existing solutions
Project team achievements
Improving state-of-the-art
Applications, impact & benefit

Social and scientific challenge

Social and scientific challenge

Issues

- Power lossesEMI, RFI
- Billing
- Stability

Requirements

- Real time
- Accuracy

Scientific challenge

Accurate measurement of ac waveforms

- By developing highly accurate voltage and current transducers
- By developing precision sampling devices
- By developing algorithms to accurately analyze these waveforms and determine power quality parameters

Scientific challenge

Algorithm's requirements

■THD > 80%

■SNR < 60 dB

> 2 periods

■> 100 samples

UK railway power line

Scientific challenge

Algorithm's requirements

- asynchronous operation
- noise performance at the theoretical minimum
- practically insensitive to harmonic distortions
- insensitive to power quality related disturbances

Existing solutions

Algorithm	Pro	Cons	
FFT	fastest	not asynchronous	
interpolated DFT	• fast	 sensitive to noise, requires longer records 	
4PSF	accuratestandardised	 very sensitive for harmonic distortions 	
multi-harmonic	 accurate, insensitive to harmonic distortions 	very slow	

Project team achievements

Two (three) algorithms developed

PSFE – Phase Sensitive Frequency Estimator (developed in SIQ)

PSFEi – interpolated PSFE (developed in SIQ)

TDIS – Time Domain Interpolation and Scanning (developed in NPL)

Frequency estimation

Algorithms typically estimate

- frequency,
- amplitude,
- phase

Most important (and demanding) isfrequency

Time consumption

- 10 000 samples Record length: Processor used:
- Environment:

2 GHz Core2Duo MATLAB

3pDFT	4PSF	PSFE	PSFEi	TDIS
3,3 ms	14 ms	17 ms	21 ms	114 ms

Other comparisons

PSFE compared to 7 independent algorithms in 2009 (I²MTC). The statement for PSFE was:

Good and stable overall performance close to theoretical limits

Czech Technical University in Prague

University of Ljubljana

Slovenian

Institute for

Quality and

Metrology

University of Perugia

Instituto de Telecomunicações

Vrije Universiteit Brussel

Applications, impact & benefit

Applications

- power-quality instrumentation
- grid instrumentation
- calibration platform for emerging instrumentation

Impact

- better power related measurements
- better control over grid pullution
- key tools for Metrology for Smart Grids initiative

Benefit

- industry
- power grid operators
- general public

